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Abstract 27 

Transcranial direct current stimulation (tDCS) is routinely used in basic and clinical research, 28 

but its efficacy has been challenged on a methodological and statistical basis recently. The 29 

arguments against tDCS derive from insufficient understanding of how this technique 30 

interacts with brain processes physiologically. Because of its potential as a central tool in 31 

neuroscience, it is important to clarify whether and how tDCS affects neuronal activity. Here, 32 

we investigate influences of offline tDCS on network architecture measured by functional 33 

magnetic resonance imaging. Our results reveal a tDCS-induced reorganisation of a 34 

functionally-defined network that is dependent on whether we are exciting or inhibiting a 35 

node within this network, confirming in a functioning brain, and in a bias free and 36 

independent fashion that tDCS influences neuronal activity. Moreover, our results suggest that 37 

network-specific connectivity has an important role in defining the effects of tDCS and the 38 

relationship between brain states and behaviour. 39 

 40 

Transcranial direct current stimulation1,2,3,4,5 (tDCS) has been widely used in the 41 

neurosciences6,7,8,9 for decades. This is so because interfering techniques like tDCS that are 42 

assumed to directly modulate neuronal activity are extremely promising for both basic and 43 

applied research as they allow for addressing research questions on the causal relationships 44 

between brain states and behaviour10,11,12. However, the efficacy of tDCS has been put into 45 

question recently13,14,15,16,17 on a methodological and statistical basis. It is thus central to 46 

have a closer look at the effects of tDCS on brain activity. In our previous publication5, we 47 

have already shown by whole-brain functional magnetic resonance imaging (fMRI) analyses 48 

that offline tDCS locally affects neuronal responses in a single brain region in accordance 49 

with stimulation polarity (i.e., inhibition or excitation). Nevertheless, the global effect of 50 

tDCS on functional brain networks in humans is still not well understood18,19. Based on our 51 

previous whole-brain fMRI results5 and on the detailed work on living macaques by Krause 52 



et al. (2017)20, we decided – as a second step - to investigate, in humans, the impact of tDCS 53 

on a functional brain network. We did so using the same experimental settings as before5.  54 

There are certain key methodological issues related to the effect of tDCS in the brain that are 55 

currently unsolved21,13,12. These include understanding the technique’s (i) functional 56 

focality, i.e. is tDCS limited to local effects on the stimulated area, or do the effects also 57 

transfer more globally to the network level as pointed out by Krause et al (2017)20; (ii) 58 

specificity of stimulation, i.e. is tDCS-induced interference dependent on general processes 59 

such as the spatially wide expansion of the electrical field22, or is it dependent on more 60 

neuronally-specified processes such as functional connectivity between regions; or (iii) 61 

modulatory effects, i.e. how does tDCS modulate functional connectivity between brain 62 

regions. Up to now, there are only two studies evaluating the effect of tDCS on the structure 63 

of underlying functional brain networks in depth by means of graph theory: one uses tDCS in 64 

combination with resting-state fMRI23, and the other combines tDCS with 65 

electroencephalography24. Importantly, none of these examined topology changes in 66 

functional brain networks in detail. For this reason and because cognitive functions rely on the 67 

processes happening within networks of functionally-connected brain regions rather than on 68 

local and isolated areas, we look at how tDCS affects neuronal organisation using a task-69 

based fMRI experiment after applying of offline tDCS. We did so because: (i) task 70 

performance enhances neuronal activity resulting in functional connectivity between relevant 71 

brain areas being more reliable in terms of graph theory metrics25; (ii) tDCS preferentially 72 

modulates active neuronal networks, when compared to inactive networks sharing the same 73 

anatomical space (activity-selectivity approach)26; and (iii) offline tDCS allows us to map the 74 

spatio-temporal patterns of functional reorganisation at the systems level27. 75 

 76 

 77 

 78 



Experimental Layout 79 

We combined tDCS with a task-based paradigm in fMRI using a repeated measures design 80 

(see Methods for more details). We asked a group of ten individuals to participate in four 81 

experimental sessions, resulting in a total of 40 sessions. Each session was separated by at 82 

least one week. In the first session, participants went through the fMRI experiment only – as 83 

control session  – whereas in the second to fourth sessions participants were first subject to 84 

tDCS stimulation outside the MR scanner that was immediately followed by the fMRI 85 

measurement. The fMRI paradigm consisted on passively watching pictures of tools, animals, 86 

faces and places. The tDCS sessions consisted of anodal (typically thought to increase 87 

neuronal excitability) or cathodal (typically thought to decrease neuronal excitability)28,19 88 

stimulation to either the left Inferior Parietal Lobule (IPL) or the right Superior Temporal 89 

Sulcus (STS). This resulted in four experimental within-participant groups: anodal stimulation 90 

on IPL (AnoIPL), cathodal stimulation on IPL (CatIPL), cathodal stimulation on STS 91 

(CatSTS) and control (Ctrl). We chose the left IPL and right STS as target areas because they 92 

are highly accessible to the tDCS stimulation technique. Moreover, we have already shown 93 

that IPL responds more to images of tools than images of stimuli from other categories (see 94 

results in 5), whereas STS does not30. This is important because by using STS we obtained a 95 

tDCS “sham” group to compare tDCS to IPL with – additionally to the control group that 96 

serves as ground truth without stimulation. Contrary to classical sham procedures, here 97 

participants receive active stimulation to an alternative location to counter doubts which arose 98 

recently31,13 concerning the ability to distinguish classical sham from active stimulation. 99 

We decided to concentrate on brain areas that are dedicated to the processing of tool items 100 

(i.e., the tool network5,32,33), which left IPL is an exemplary constituent, because effects of 101 

tDCS depend on the cognitive/neural processing participants are engaged in – i.e., because 102 

this network would be actively processing the tool stimuli presented in our experiment, we 103 

could better test the effects of tDCS over this network. We selected 18 regions of interest 104 



(ROIs) that have been associated with tool processing29,34,35. The location of the ROIs can 105 

be seen in Figure 1 using BrainNet Viewer software36 (Version 1.53) as red spheres placed 106 

on the ICBM-152 template37. The location corresponds to the ROIs’ centre coordinates listed 107 

in Table 1. Brain networks demonstrate hierarchical modularity (or multi-scale modularity) - 108 

i.e. each module contains a set of sub-modules that contains a set of sub-sub-modules, etc38. 109 

Object recognition – and thereby the tool network as well – is organised in a modular way 110 

comparable to colour vision which is shown to be automatic, effortless and informationally 111 

encapsulated39. Thus, we treated the tool network as a modular network with a subset of 112 

highly functional-connected nodes. Keeping this in mind, we are able to test whether tDCS 113 

can induce reorganisation over a functional network in the brain, and specifically here over 114 

the tool network, beyond the known local effects over the stimulated area as reported in our 115 

previous publication5.  116 

 117 

 118 

 119 

L R



Figure 1: Location of the regions of interest analysed. Coloured in red are the regions of 120 

interest (ROIs) within the tool functional network according to centre coordinates and labels 121 

given in Table 1. The location of the stimulation sites is shown either in green (Inferior 122 

Parietal Lobule – IPL) or in blue (Superior Temporal Sulcus – STS). L/R denotes the left and 123 

right hemisphere, respectively.  A video with 360° view of the location of the ROIs is 124 

available as Supplementary Information.  125 

 126 

Graph Theory Analysis  127 

A graph is mathematical description of a network consisting of nodes N (here: the ROIs 128 

selected) and edges k (here: functional “links” between pairs of ROIs). Below, we refer to 129 

graphs explicitly because this does not make any assumptions on the nature of the edges but 130 

rather emphasises the aspect of mathematical modelling because “network” generally refers to 131 

real-world connected systems40. We analysed weighted undirected graphs averaged per group 132 

(see Methods for details of graph construction) using Brain Connectivity Toolbox41 133 

implemented in MATLAB R2013a (The MathWorks Inc., Natick, MA, USA). Because we 134 

were interested in changes in underlying network architecture in the brain between 135 

experimental groups we looked at topological graph metrics as community structure and 136 

participation coefficients primarily. After graph construction, we checked for N,k-dependence 137 

(see Methods). The number of nodes stays constant (N = 18) in all experimental groups, the 138 

number of edges is almost equal between groups (k̄ = 150, Δk = ±2). Using a repeated 139 

measures design, we were only interested in changes between experimental groups. So, we 140 

kept the resulting graphs while considering the gain or loss of an edge as an effect of the 141 

stimulation (tDCS).   142 

 143 

 144 

 145 



Community Structure 146 

Community structure has been identified as a sensitive marker for organisation in brain 147 

networks42. Community structure analysis detects the groups of regions more densely 148 

connected between them than expected by chance. The resulting group-level community 149 

structure was visualised by assigning a different colour to each community (see Figure 2). 150 

This was then displayed by overlaying spheres coloured by community affiliation on the 151 

ICBM-152 template as done in Figure 1.  152 

 153 

 154 

Figure 2: Community structure of the tool network. Within the four experimental groups 155 

(AnoIPL, CatIPL, CatSTS and Ctrl), resulting community structures of the tool network are 156 

shown. Colours denote different communities; red indicates community I, yellow community 157 

II, green community III and blue community IV. Angle of vision kept as in Figure 1. Location 158 

of the spheres visualised according to centre coordinates given in Table 1.  159 
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 160 

The values of modularity Q corresponding to the community structures shown in Figure 2 are 161 

almost identical (ΔQ = ±0.02). There are three communities in the Ctrl and CatSTS 162 

experimental groups, two in CatIPL experimental group and four in AnoIPL experimental 163 

group. The communities in Ctrl and CatSTS experimental groups differ minimally from each 164 

other. One node changed community assignment (from community III to community I). In 165 

AnoIPL experimental group, the community structure intensifies to four whereas in CatIPL 166 

experimental group the community structure relaxes to two. We controlled for possible 167 

limitations43 relevant to our experimental layout: the results shown in Figure 2 are neither 168 

subject to resolution limit of the objective function44 nor dependent on the method used to 169 

average the correlation coefficients (see Methods for more details). Furthermore, we overlaid 170 

the community structure for each experimental group on their averaged weighted temporal 171 

correlation matrix before converting to absolute values to verify that negative edge weights 172 

are sparser within and denser between communities found45. Likewise, we overlaid the 173 

community structure for each experimental group on their distance matrix (see Methods) to 174 

re-examine that distances within communities are smaller than between communities as 175 

shown in Figure 3. We show that the number of communities changed depending on 176 

stimulation site and polarity of tDCS. While there is almost no difference in community 177 

affiliation when stimulating STS which does not belong to the tool network, there are clear 178 

polarity-dependent effects when stimulating IPL.  179 



 180 

Figure 3: Plots of distance matrices with community structure on top. For the four 181 

experimental groups (AnoIPL, CatIPL, CatSTS and Ctrl), normalised distance matrices 182 

grouped by communities are shown. The borders of the communities are marked by thick red 183 

lines. The colour bar indicates the normalised distance between nodes. The distance is less 184 

within communities than between communities throughout experimental groups in all 185 

communities found.  186 

 187 

Participation Coefficient 188 

While the within-module degree z score defines the role of a node in its own community, the 189 

participation coefficient P is a feature of each node’s connectivity relative to the community 190 

structure of the entire network46. Nodes with a low value of P share connections with other 191 

members of the same community, whereas those with a high P value serve as connectors 192 
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between communities. In Figure 4, the P values for the four experimental groups are plotted 193 

in the P-z parameter plane (see Methods for details).  194 

 195 

 196 

Figure 4: Plots of within-module degree z against participation coefficient P. For the four 197 

experimental groups (AnoIPL, CatIPL, CatSTS and Ctrl), P-z-plots are shown. The borders of 198 

the different regions (R1 – R4, see Methods) are marked by lines. There is a clear difference 199 

in distribution between groups AnoIPL and CatIPL (a) while there is no difference between 200 

groups CatSTS and Ctrl (b).  201 

 202 

There is a clear difference visible in the distributions of P values between CatIPL and AnoIPL 203 

experimental groups (Figure 4 (a)) while there seems to be no difference in the other two 204 

experimental groups (Figure 4 (b)). Therefore, we analysed the differences in P distributions 205 

using the Wilcoxon signed-rank test as implemented in MATLAB R2013a. The one-tailed 206 

Wilcoxon signed-rank test with α = 0.01 shows a significant difference in AnoIPL > CatIPL 207 

(zwilcoxon = 3.70, p << 0.01), AnoIPL > CatSTS (zwilcoxon = 3.09, p << 0.01), AnoIPL > Ctrl 208 

(zwilcoxon = 2.92, p << 0.01), CatIPL < CatSTS (zwilcoxon = -3.66, p << 0.01) and CatIPL < Ctrl 209 

(zwilcoxon = -3.70, p << 0.01). There was no significant difference using the two-tailed 210 

Wilcoxon signed-rank test with α = 0.01 in CatSTS ≠ Ctrl (zwilcoxon = -0.85, p > 0.39). 211 
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Compared to both control experimental groups, more nodes in the AnoIPL experimental 212 

group jumped to region R3 while those of the CatIPL experimental group fell back 213 

completely to region R2. Finally, we analysed the differences in z distributions as well. There 214 

was no significant difference using the two-tailed Wilcoxon signed-rank test with α = 0.01 215 

between groups: AnoIPL ≠ CatIPL (zwilcoxon = 0.24, p > 0.81), AnoIPL ≠ CatSTS (zwilcoxon = 216 

0.20, p > 0.84), AnoIPL ≠ Ctrl (zwilcoxon = -0.20, p > 0.84), CatIPL ≠ CatSTS (zwilcoxon = 0.11, p 217 

> 0.91), CatIPL ≠ Ctrl (zwilcoxon = 0.02, p > 0.98) and CatSTS ≠ Ctrl (zwilcoxon = 0.37, p > 0.71). 218 

The role of nodes within their community (z value) does not differ significantly in all 219 

experimental groups. The role of nodes to other communities (P value) changed depending on 220 

the kind of stimulation. There was no change compared to Ctrl in the CatSTS experimental 221 

group. But in the AnoIPL experimental group, the community structure intensifies and so do 222 

the edges between communities. The four modules are more densely connected, the node 223 

roles jumped from region R2 (lower P values) to region R3 (higher P values) having more 224 

edges to other communities as compared to both control groups. The opposite is the case in 225 

the experimental group CatIPL where the module structure relaxes and so do the node roles. 226 

They drop completely to region R2 (lower P values) having less edges between communities 227 

than in both control experimental groups. 228 

 229 

Discussion  230 

Here we show that tDCS to one node of a functional network affects the network architecture 231 

as a whole. Altogether, the results presented here and in our previous publication5 provide a 232 

proof of principle that tDCS – delivered through the scalp using currents of 2 mA – can 233 

influence neuronal activity in humans. Moreover, they suggests that the effects of tDCS may 234 

arise from changed communication patterns (and not just local modulation of signal) that are 235 

modified by stimulation polarity and from altered functional connectivity between brain areas.  236 



Crucially, our data shed light to some of the unresolved issues regarding the effects of tDCS 237 

at systems level. Namely, that: (i) tDCS is not limited to a local effect on the stimulated area, 238 

but exerts polarity-specific effects on the topology of the functional network attached; (ii) this 239 

effect is, if anything, only minimally affected by non-specific spread of the tDCS induced 240 

electrical field, but is rather dependent on network-specific processing of information; and 241 

(iii) at an intermediate scale, tDCS modulates functional connectivity by modular 242 

reorganisation.  243 

Our results also show that in anodal tDCS the community structure in a regional and task-244 

related network that is attached to the stimulation site intensifies and this leads to more edges 245 

between these communities. The existence of some edges between nodes in different 246 

communities acts as topological short-cuts38. This is in line with the results by Polania et al. 247 

(2011)23 who came to the conclusion that anodal tDCS increased the functional coupling 248 

between left somatomotor cortex (SM1) and neighboured topological regions (left premotor, 249 

motor and left parietal cortex) while the number of direct functional connections from left 250 

SM1 to topologically distant grey matter voxels decreased significantly. Interestingly, our 251 

results contradict Mancini et al.24 who stated that although tDCS is able to change network 252 

properties, it does not seem to affect the topological organisation of brain activity at a global 253 

level - which is not the case, as we show here. 254 

Our results in the human brain are in line with those of Krause et al. (2017)20 who came to 255 

the conclusion that tDCS, in the primate brain, acts by modulating functional connectivity 256 

between brain areas. Despite the fact these authors showed – in agreement with Vöröslakos et 257 

al. (2018)13 – that in standard tDCS protocols, the electric field reaching the brain is too weak 258 

to alter the firing rate of neurons, they also detected a significant increase in anodal 259 

stimulation in the local field potential power and coherence in the targeted region when 260 

inspecting the effect of tDCS within the same protocols on the brain of living macaques – an 261 



ideal model system because of their thick, dense skull and gyrencephalic cortex similar to 262 

humans.  263 

Finally, our data are highly consistent with the proposal that effects of tDCS depend on the 264 

level of ongoing activation in the particular functionally-defined target network47 – when we 265 

stimulated a node from another functionally-defined network (i.e., STS) we do not see any 266 

tDCS stimulation effects on the tool network.  267 

To conclude, our findings confirm that tDCS influences neuronal activity in humans in a 268 

polarity-specific way, and does so in an experimental condition where participants are blind to 269 

the polarity of the tDCS stimulation, the measurement (BOLD signal) is bias free in what 270 

concerns the status of tDCS – i.e., within a completely independent analysis – and the neural 271 

tissue is alive and is engaged in processing incoming stimuli. Moreover, we also show that the 272 

flow of information within a functionally-isolated network is altered in a polarity-specific way 273 

and that this may be partially the locus of the causal relation between brain states and 274 

behaviour. 275 

 276 

Methods  277 

Data Acquisition and Pre-processing 278 

We performed a consecutive offline tDCS/fMRI experiment on ten healthy right-handed 279 

students of the University of Coimbra (equal number of females and males) at a 3T 280 

MAGNETOM Trio whole-body MR scanner (Siemens Healthineers, Erlangen, Germany). 281 

The study adhered to the Declaration of Helsinki and was approved by the Ethic Committee 282 

of the Faculty of Medicine, University of Coimbra, Portugal. All participants gave written 283 

informed consent after a detailed description of the complete study. Participants went through 284 

four experimental sessions: a control session where they participated only in the fMRI 285 

experiment; a tDCS anodal session on IPL followed immediately by the fMRI experiment; a 286 

tDCS cathodal session on IPL followed immediately by the fMRI experiment; and a tDCS 287 



cathodal session on STS followed immediately by the fMRI experiment. All participants went 288 

through the control session first. The order of the tDCS sessions was counterbalanced across 289 

participants. Each session was separated by at least a week. During the fMRI experiment, the 290 

participants viewed pictures passively in an object processing paradigm where we presented 291 

images of tools, animals, famous faces, and famous places in a miniblock design48 (each 292 

miniblock was restricted to a category). Within each run, miniblocks were pseudo-293 

randomised; all participants completed five runs of this experiment which resulted in 294 

recording 455 functional volumes per session. Further information about paradigm 295 

presentation, fMRI data acquisition and tDCS methodology is given in great detail in our 296 

previous publication5 where we used the same experimental settings.  297 

For analysis of functional brain networks, we extracted the overall mean time series from each 298 

of 18 brain regions known to be part of the tool network29,34,35,49,50,51,52  (see Table 1) 299 

using a BrainVoyager software (Brain Innovation, Maastricht, The Netherlands) adapted 300 

Anatomy Toolbox53. Before extraction of the time series, the functional volumes were pre-301 

processed using BrainVoyager QX 2.8 applying slice-time and 3D motion correction, 302 

normalisation to Talairach space54, and z-normalisation. The time series were high-pass 303 

filtered (0.008 Hz) to remove low-frequency scanner drift before constructing functional brain 304 

networks. 305 

 306 

Construction of Functional Brain Networks 307 

Each of the 18 ROIs selected above represents a single node in the resulting functional 308 

network. From the overall mean time series, we then obtained a temporal correlation matrix 309 

(size 18 x 18) for each participant by computing the Pearson partial correlation coefficients 310 

with controlled variables as implemented in MATLAB R2013a between time series of every 311 

pair of ROIs, while controlling for effects of noise. As covariates of non-interest for noise 312 

correction, we grouped the mean time series from white matter and cerebrospinal fluid 313 



extracted for each participant individually along with each participant’s motion parameters 314 

derived from the realignment step in pre-processing and the effects of the paradigm. The 315 

covariate of the paradigm effect was generated by convolving the box–car functions of 316 

paradigm conditions with the standard hemodynamic response function implemented in 317 

Statistical Parametric Mapping software (SPM12 (v6685), Wellcome Trust Centre for 318 

Neuroimaging, Institute of Neurology, University College London, UK) and was used to 319 

remove signal fluctuations of paradigm conditions from the time series. For each temporal 320 

correlation calculated, a p-value is given based on Student’s t distribution. To minimise the 321 

number of false-positives, we used a significance level of p < 0.002 (Bonferroni correction) to 322 

threshold the temporal correlation matrix of each participant. The remaining correlations can 323 

be interpreted as connections or edges between the nodes of the functional network. Here, the 324 

values of the correlation coefficients serve as edge weights showing the strength of a relation. 325 

While binary values enhance contrast they may also hide important information as edge 326 

weights below or above threshold may vary substantially between groups. Weighted graph 327 

analysis preserves this information. In our analyses, to avoid negative edge weights we 328 

converted them to absolute values because we were interested in any changes between the 329 

four experimental groups. It was shown elsewhere55 that linearly mapping the weight range [-330 

1,1] to [0,1] kept the topology metrics of functional brain networks.  331 

 332 

Averaging correlation coefficients 333 

There are at least three different methods to average correlation coefficients: (i) calculation of 334 

arithmetic mean of rs which is known to underestimate the true sample mean, (ii) Fisher’s z-335 

transform and inverse Fisher’s z-transform before and after averaging which is known to 336 

overestimate the true sample mean56 and (iii) Olkin-Pratt estimator57 which is supposed to 337 

be least biased. Because of our sample sizes (N ≤ 10) which are known to be affected by 338 

bias58 most, we calculated averaged correlation matrices for each group using all three 339 



methods. Then, we computed all graph theory metrics listed below with the three group 340 

means averaged differently. There were no qualitative differences in the results. The choice of 341 

method had no noteworthy influence. For further analysis, we used the Olkin-Pratt estimator 342 

because it is recommended for averaging correlations either across samples or over repeated 343 

measures within sample59.   344 

 345 

Graph Theory Metrics 346 

In general, networks (or graphs) are represented as sets of nodes N and edges k. Graphs are 347 

said to be unweighted if edges are either only present or absent – or weighted if edges are 348 

assigned weights. Graphs are undirected if edges do not contain directional information and 349 

directed if they do. Here, we analysed weighted undirected graphs by means of graph theory 350 

using the Brain Connectivity Toolbox41 (BCT, version 2017-01-15). All graphs analysed are 351 

connected graphs. Graph theory metrics depend on the number of N and k60 (N,k-352 

dependence) as well as on the choice of correlation matrix and edge weights61. N,k-353 

dependence can have two effects on graph theory metrics: (i) true effects are masked by 354 

opposite effects and (ii) significant effects are introduced. Here, we have primarily looked at 355 

graph theory metrics that are less sensitive to changes in N and k like topological metrics. 356 

First, we compared the graphs of the four groups concerning number of edges to address N,k-357 

dependence of graph metrics. The number of nodes (here: 18) stays constant throughout 358 

groups. Then, we looked at topological metrics such as modularity, community structure, 359 

within-module degree z score, participation coefficient and distance.  360 

 361 

Degree: Node degree is the number of edges connected to a node. During calculation of node 362 

degree using BCT, weight information on edges is discarded60. 363 

 364 



Modularity: The modularity Q measures the goodness with which a graph is optimally 365 

partitioned into functional subgroups or communities. For weighted graphs, modularity is 366 

defined as62 367 

   
 

  
∑[     

    

  
]  

   

       

with Aij: weight of edge between i and j, ki = ∑j Aij: sum of weights of edges attached to vertex 368 

i, ci: community vertex i is assigned to, δ(x,y) is 1 if x = y and 0 otherwise and m = 1/2 ∑ij Aij. 369 

Being a scalar value, Q lies in the interval [−1,1], theoretically. If the fraction of within-370 

community edges is no different from what is expected for the randomised network, then Q 371 

will be zero. Nonzero values indicate deviations from randomness. Q measures the density of 372 

links inside communities compared with links between communities. In this context, the 373 

modularity Q is used as an objective function to optimise during graph partitioning: the higher 374 

the value of Q the better the partitioning. If the number of edges within communities exceeds 375 

the number of edges expected by chance the value of Q is positive.  376 

 377 

Community structure: If nodes of a graph can be easily partitioned into sub-units of densely 378 

connected nodes, the graph is presumed to have community structure. This implies that 379 

communities merely consist of nodes with more densely connections within and more 380 

sparsely connections between communities. This definition only holds true for positive edge 381 

weights in the first place. Concerning negative edge weights, the assignment of nodes should 382 

be done the opposite way compared to positive edge weights, that is negative edges are sparse 383 

within and more dense between communities45, a concept evolving from social balance 384 

theory63. Although we computed all graph theory metrics using absolute values we cross-385 

checked this limitation by overlaying the community structure for each group on their 386 

averaged weighted temporal correlation matrix before converting it to absolute values to 387 

verify this issue. As specified before, modularity is an objective function measuring the 388 



quality of a graph’s community partition. By searching over all possible partitions of a graph, 389 

the modularity optimisation method identifies communities that have a high modularity value 390 

Q. The detection of a graph’s optimal community structure is essential as it may identify 391 

functional sub-units so far unknown that influence the overall behaviour of the graph. The 392 

optimal community structure is a partition of the graph into non-overlapping sub-units of 393 

nodes maximising the number of edges within sub-units and minimising the number of edges 394 

between sub-units64. One limitation of modularity optimisation is the resolution limit44 395 

which could lead to failure in resolving even well-defined small communities. Therefore, it 396 

might be possible that communities found are clusters of communities in fact. This might be 397 

the case if kc < 2K  where kc denotes the number of internal edges in the community c and K 398 

the total number of edges in the graph. Therefore, it is important to look more closely at the 399 

internal structure of all communities found as can be done by using the inequation44 400 

  

 
  (

  

  
)
 

   

with dc: total degree of nodes in community. If the inequation holds true the community under 401 

consideration is actually a single community and not a mixture of two or more smaller ones. 402 

All communities found in our analysis comply with the inequation given above. Because 403 

community detection using exact modularity optimisation is an NP-hard problem, BCT 404 

implemented the Louvain algorithm64 which contains a stochastic element that lets the output 405 

vary from run to run. To account for this issue, we ran the algorithm a 1000 times per group 406 

and used consensus clustering65 for selection of best community structure for further 407 

computations. Once the community structure of a graph is known, the following two graph 408 

theory metrics are easily computed. 409 

 410 

Within-module degree z score: The internal organisation of a community or module may vary 411 

between totally centralised nodes (one or a few nodes connected to all the others) and totally 412 



decentralised ones (all nodes having similar number of edges). Nodes are said to fulfil similar 413 

roles if they have similar connectivity within a community. The within-module degree z-score 414 

is a metric of how well-connected a node is to other nodes in a community46 and is defined as 415 

    
        ̅    

      
   

with ci: module containing node i, ki(ci): within-module degree of i, k̄ (ci): mean of within-416 

module ci degree distribution and σk(ci): standard deviation of the within-module ci degree 417 

distribution. The higher the values of z, the higher the within-module degrees are and vice 418 

versa which implies that nodes with z ≥ 2.5 can be classified as hub nodes and nodes with z < 419 

2.5 as non-hub nodes46. Both types of nodes can be subdivided even further by using the 420 

values of the participation coefficient P.   421 

 422 

Participation coefficient: The two areas in the z-plane (hub and non-hub nodes) can be fine-423 

grained because of the connections of a node to communities other than its own. Sharing the 424 

same z-score, one node might be connected to several nodes in other communities while the 425 

other might not. The participation coefficient acts as a measure of diversity of inter-modular 426 

connections of nodes46 and is defined as 427 

      ∑(
   

  
)

   

   

 

with kij: number of edges of node i to nodes in community j, ki: total degree of node i and nc: 428 

number of communities detected. The participation coefficient P measures how ‘well-429 

distributed’ the edges of a node are among different communities. It is close to 1 if the edges 430 

are uniformly distributed among all the communities and 0 if the entire edges are within its 431 

own community. 432 

 433 



Node topology: Based on the idea that nodes with the same role should have similar 434 

topological properties, the role of a node can be determined by its location in the P-z-435 

parameter plane which defines how the node is positioned in its own community and relative 436 

to others. Guimerà and Amaral46 defined seven regions by dividing the P–z parameter plane 437 

in different areas. Because we are only looking at the tool network, we do not expect to find 438 

any hub nodes (z ≥ 2.5). So, here we only took into account the non-hub nodes area (z < 2.5) 439 

that was subdivided into four different regions: R1 – nodes with all their edges within their 440 

module (P ≤ 0.05); R2 – nodes with at least 60% of their edges within their module (0.05 < P 441 

≤ 0.62); R3 – nodes with half of their edges to other modules (0.62 < P ≤ 0.80); and R4 – 442 

nodes with edges homogeneously distributed among all modules (P > 0.80). Such nodes were 443 

classified as kinless nodes and are said to be mostly found in network growth models, but not 444 

in real-world networks.  445 

 446 

Distance: The distance matrix shows the length of shortest paths between all pairs of nodes. 447 

Each entry stands for the number of edges that have to be traversed to get from one node to 448 

another. By using a weighted correlation matrix, higher correlation coefficients denote shorter 449 

distances. We converted the weighted correlation matrices to length by inversion of weights 450 

and fed them into Dijkstra algorithm66 to compute the distance between nodes. 451 

 452 
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Table 1. Overview of brain regions in analysed functional network 630 

Lobe Hemisphere Structure Brodman 

area [BA] 

Label Talairach Coordinates 

X Y Z 

 

ROIs of Tool Network 

temporal left posterior middle 

temporal gyrus 
BA 37 pMTG -42 -62 -7 

temporal left middle fusiform 

gyrus 
BA 37 MFG -24 -48 -8 

occipital left extrastriate 

visual cortex 
BA 19 V3aV7 -23 -80 24 

occipital right extrastriate 

visual cortex 
BA 19 V3aV7 25 -78 27 

parietal left anterior angular 

gyrus 
BA 39 PGa -41 -63 33 

occipital left posterior 

angular gyrus 
BA 39 PGp -40 -73 24 

parietal 

left superior parietal 

lobe (anterior 

parts) 

BA 7 BA7a 

-18 -64 49 

right 
18 -65 50 

parietal 

left superior parietal 

lobe (posterior 

parts) 

BA 7 BA7p 

-10 -76 40 

right 
13 -76 44 

parietal left lateral superior 

parietal lobe 
BA 7 7PC -31 -55 50 

parietal right lateral superior 

parietal lobe 
BA 7 7PC 27 -54 49 

parietal left supramarginal 

gyrus 
BA 40 PF -53 -41 31 

temporal left supramarginal 

gyrus 
BA 40 PFcm -45 -39 21 

parietal left supramarginal 

gyrus 
BA 40 PFm -48 -54 34 

parietal left supramarginal 

gyrus 
BA 40 PFop -53 -28 24 

parietal left supramarginal 

gyrus 
BA 40 PFt -48 -29 33 

parietal left intraparietal 

sulcus 
BA 7/40 hIP1 -34 -52 34 

parietal left intraparietal 

sulcus 
BA 7/40 hIP2 -42 -44 37 

parietal left superior parietal 

lobe 
BA 7/40 hIP3 -29 -54 38 

 

Stimulation Sites 

parietal left inferior parietal 

lobe 
BA 40 IPL -38 -37 36 

temporal right superior 

temporal sulcus 
BA 37 STS 44 -45 6 



Here, we list the names of the brain areas, labels used in the text and centre coordinates (x,y,z) 631 

in Talairach space of the regions of interests (ROI) of the tool network and the stimulation 632 

sites. The anterior and posterior parts of the superior parietal lobe are bilateral ROIs. 633 


